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Characterization of long-range correlations in complex distributions and profiles
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Characterizing long-range correlations in complex distributions, such as the porosity logs of field-scale
porous media, and profiles, such as the fracture surfaces of rock and materials, is an important problem. We
carry out an extensive analysis of such distributions represented by synthetic and real data to determine which
method provides the most efficient and accurate tool for characterizing them. The synthetic data and profiles
are generated by a fractional Brownian moti&BM) and the real data analyzed are a porosity log of an oil
reservoir and time variations of the pressure fluctuations in three-phase flow in a fluidized bed. The FBM is
generated by three different numerical methods and the data are analyzed by seven different techniques. Our
analysis indicates that the size of the data array greatly influences the accuracy of characterization of its
long-range correlations. We also find that if the size of the data array is large enough, the commonly used
rescaled-rangeR/S) method of analyzing FBM series fails to provide accurate estimates of the Hurst expo-
nent, although it can provide a reasonably accurate analysis of a data array that is generated by a fractional
Gaussian noise. In contrast, the maximum entropy and wavelet decomposition methods offer highly accurate
and efficient tools of characterizing long-range correlations in complex distributions and profiles. New methods
that are somewhat similar to tH&/S method are also suggest¢®1063-651X97)05407-X

PACS numbgs): 47.55.Mh, 05.40tj, 47.53+n

[. INTRODUCTION where r=(x,y,z) and ry=(Xq,Y9.Zo) are two arbitrary
points andH is the Hurst exponent. A remarkable property
Field-scale porous medi&SPM), such as oil reservoirs of the FBM is that it generates correlations whose extent is

and groundwater aquifers, are highly heterogeneous at mangfinite (i.e., it is as large as the linear size of the systdror
length scales. Their heterogeneities manifest themselves akample, consider the one-dimensional case and define an
three different scales, which a¢g microscopic, which is at incremental correlation functio8(x) of the “future” incre-
the level of pores and graingj) macroscopic, which is at mentsBy(x) with the “past” incrementsB,(—x) by (the
the level of core plugs; andii) megascopic, which includes meaning of past and future becomes clear if we replace
the entire reservoir or aquifer. Modeling flow and transportwith a time variablg
in such porous media depends crucially on the characteriza-
tion of their structure and in particular the distributions of (—Bu(—x)By(x))
their heterogeneities. However, although the characterization C(x)= (Bu0?) ; ©)
of laboratory-scale(macroscopit porous media has been H
done in great detail and a reasonable understanding of the

has been obtainedL,2], the same is not true about FSPM, h ; lati b 4 b .
whose characterization is plagued by a lack of sufficient datdioreover, the type of correlations can be tuned by varying

and hampered by the wide variations in the data that argl- If H>1/2, thenC(x)>0 and the FBM displaygersis-
collected at various locations throughout the system. tence i.e., a trendfor example, a high or low valyeatx is

Two important characteristics of FSPM are their porosity!ikely to be followed by a similar trend ak+Ax. If
logs, often collected bin situ methods, and their permeabil- 1 <1/2, thenC(x)<0 and the FBM generateantipersis-
ity distributions, which are usually obtained by collecting at€nce i-e., a trend ai is not likely to be followed by a
number of core plugs at various depths along a vertioal s!m!lar trend atx+Ax. ForH=1/2 the trace of the FBM is
horizonta) well. In a pioneering work, Hewef8] proposed similar to that of a random walk and tlecrementsare un-
that the porosity logs and permeability distributions of FSPmcorrelated. _ o ,
obey fractal statistics. More specifically, he provided evi- A Conv§n|ent way of representlng a dls_tnbutlon function
dence that the porosity logs in the direction perpendicular téS through its spectral densif(e), the Fourier transform of
the bedding may obey the statistics of fractional GaussiaffS variance. For a-dimensional FBM it can be shown that
noise (FGN), while those parallel to the bedding follow a

then one finds thaC(x)=2(2?""1-1), independenbf x.

fractional Brownian motion(FBM), which is a stochastic S o) = 1 4
processBy(r) [4] with the properties (@)= ' )
2 w|2) H+d/2
i=1
(Bu(r)—=Bu(rp))=0, (o
wherew= (w4, .. . ,wq). Fractional Brownian motion is sta-
tionary, but not ergodic. Its variance for a large enough array
([Bu(r)—Bu(ro) 1% ~|r—ro|?", (2) s divergent It is not differentiable, but by smoothing it over
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an interval one can obtain its “derivative” numerically, The plan of this paper is as follows. In Sec. Il we discuss
which is the FGN whose spectral density in, e.g., one dimenaumerical generation of the synthetic data by a FBM and its

sion, is given by sensitivity to the accuracy of the method and the size of the
data array. In Sec. Ill we describe the methods that we use to
1 analyze the data, while Sec. IV presents the results of our
S(w)=—r—1- (5) analysis of the synthetic and real data and a discussion of
@ their implications. The paper is summarized in Sec. V.

We should point out that i is a random variable that obeys
the statistics of the FBM, then the increments

v(r+Ar)—uv(r) are Gaussian random variables. Since the real data that we analyze are one dimensional,
Itis clear that the Hurst exponeht determines the nature the synthetic data are also generated by a one-dimensional

of the correlations. Moreover, giveth, one can generate the FBM for which there are a number of numerical methods. As

porosity logs and the permeability distributions for use in thegne goal of our paper is to see which method is the most

simulation of flow and transport in FSPM if such propertiesaccurate, we used three different numerical methods for gen-

follow the statistics of a FBM or 4Gn. Thus, given a po- erating a one-dimensional FBM, a brief description of each

rosity log or a permeability distribution of a porous medium, js given below. For each method, each valugHgfand each

how can one accurately determine the associated value gfze of the FBM array, we generated 100 different realiza-

H? The most widely used method of estimatiHgis the  tions of the FBM, and the results that are discussed below

rescaled-rangeR/S) analysis(described beloy first devel-  represent the averages over all the realizations. The typical

oped by Hurset al. [5] and analyzed exhaustively by Man- standard deviation among all of the realizations was about

delbrot and Wallig6] and Wallis and Matalag7]. Accord- ~ +59% of the average values. We used 20 valuesHof

ing to Mandelbrot and Walli§6], this method is very robust. equally spaced ifi0,1].

However, in the course of analyzing extensive field data on

the porosity logs and permeability distributions of an oil res-

ervoir in the Middle East, it appeared to us that, while the A. Fast Fourier transformation

R/S method may be robust, it is not very accurate in the Equation(4) provides a convenient method of generating
sense that it yields roughly the same valuéiofegardless of  an array of numbers that obey the FBM statistics, using a fast
the data. This prompted us to undertake a systematic analysigurier transforn{FFT) technique. In this method, one first

of the data, as well as synthetic data generated by a FBM, byenerates random numbers, uniformly distributedGrt),

a variety of methods to see which method provides the mosing assigns them to the sites ofdadimensional lattice,
accurate description of them and an estimate of the assoGjghich in our case is a linear chain. The Fourier transform of
ated value ofH. The purpose of this paper is to report the the resultingd-dimensional array of the numbers is then cal-
results of this analysis. This issue has already been investiyjated numerically. The Fourier-transformed numbers are
gated by a few authorg8—11]; however, Refs[8,9] con-  han muitiplied by/S(e) and the results are then inverse
cerned themselves mainly with the accuracy of ®&S  Fqyrier transformed back into the real space. The numbers so

method, whereas our goal here is to test various methods @tained obey the FBM statistics with the desired long-range
analyzing the data. ReferenE0] did not study the problem o rejations. To avoid the problem associated with the peri-

systematically, while Schmittbutelt al. [11] did not investi-  ogicity of the numbers arising as a result of their Fourier
gate several important issues and methods that we d'scusst'r%msforming one has to generate the array with a much
this paper(see below , larger lattice size than the actual size that is used in the
The problem that we study is, however, more general and5jysis and use the central part of the array. In the discus-
not restricted to analyzing complex distributions, such as pOsjon of our results, when we refer to the size of the synthetic

rosity logs. In recent years, the description of scale-invariang,i4 array we mean the size of the central part of the FBM
properties of disordered systems by fractal analysis has b%frray that we used in our study.

come very fashionable. The concept of self-similarity of
fractal systemg12] has been extenddd 3] to anisotropic
systems through the notion of self-affinity, which implies
that the scale invariance of an anisotropic fractal system is In the successive random additit®RA) method[18] one
preserved only if the scale factors are direction dependenstarts with the two end points dd,1] and assigns a zero
Examples include the profiles that are generated by a FBMalue to them. Then Gaussian random numbeysire added

or a FGN. There are also a large number of natural systent® these values. In the next stage, new points are added at a
that are self-affing14], an example of which is fracture sur- fractionr of the previous stage by interpolating between the
faces of materials and natural rofk,2,15—17. If we con-  old points (by either linear or spline interpolatipnand
sider a two-dimensional cut, or a roughness profile, of sucfsaussian random numbess are added to the new points.
systems, then the average height of the profile scales with ithus, given a sample df; points at stagé with resolution
lengthL asL", whereH is again the Hurst exponent. There- \, stagel +1 with resolutionr\ is determined by first inter-
fore, if we digitize such a profile to estimate its Hurst expo-polating theN;,;=N;/r new points from the old points and
nent, we will be faced with the same task as analyzing dhen Gaussian random numbeis are added to all of the
complex distribution and describing its long-range correla-new points. At stagé with r <1, the Gaussian random num-
tions. bers have a variandsee Eq.(2)]

Il. GENERATION OF SYNTHETIC DATA

B. Successive random additions
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oZ~r2H, (6) 2

This process is continued until the desired length of the data 15}
array is reached. Here we use a value efl/2 to generate
the FBM'’s with different values oH. 1r

C. The Weierstrass-Mandelbrot algorithm 05r

In the Weierstrass-Mandelbrgd¥WM) method[18] one
first divides the interva]0,1] into n—1 equally spaced sub-
intervals, where is the size of the data array that we wish to
generate, and assigns zero value to all the points in the in-
terval. Then, to point at a distance; from the origin one
adds a random number generated by the Weierstrass functiol
defined by

¥(z)

W(Xi) = CiriMsin(2ar ~Ix;+ ¢;), 7
() j:z_x ! (2 i+ &) ™ FIG. 1. Daubechies functiof#(x) used in the wavelet decom-

position method.
whereC; and ¢; are random numbers distributed according
to Gaussian and uniform distributions, respectively, arsl
a measure of the distance between the frequencies, which is
usually chosen to be small, so that the distance is small; we
usedr =0.9. The variance o€; is proportional tor?" and
the random phaseg; are distributed uniformly of0,27].
Usually, the infinite series in Eq7) is approximated by a
finite number of terms; we used up to 140 terms in
—70<j=<70 to ensure its accuracy. The power spectrum of
the data array generated by the WM method is discrete and wavelet decomposition analysis, which is a space-scale
does not contain all the frequencies. However, its spectrajecomposition method, is a suitable tool for analyzing the
density is still proportional tav~?H*1), in agreement with FBM. Using discrete orthonormal wavelet decomposition of
Eq. (4). a one-dimensional FBM, we obtaji9]

R(L)
W~LH, (12)

so that a logarithmic plot oR(L)/S(L) versusL yieldsH.

B. Orthonormal wavelet decomposition method

IIl. METHODS OF ANALYSIS (12)

Dj(k):2‘j’2J Bu(X) (27 Ix—k)dx,
As mentioned above, we have used several methods of )

analyzing the synthetic and real data. Our goal is to test the

accuracy and efficiency of each method and their possibl@hereD;(k) are the wavelet-detail coefficients of the FBM,

sensitivity to various factors that may affect their perfor- ¢ is the wavelet functionk=1,2,. .. ,n, wheren is the size

mance, e.g., the size of the data array. What follows is a brie6f the data array, and thgs are integers. Thus, in this

description of all the methods that we have used. method one fixe$ and variesk to calculateD;(k). For each

j one determines such numbers and calculates their vari-

anced?(j). Then it can be shown that, regardless of the

A. Rescaled-range analysis |
wavelet functiony, one hag19,20

Suppose that a variabletakes the value(l) at position
[. In the R/'S method one calculated’(L) by

logs[ 02(j)1=(2H+1)] + const. (13)
R(L)=Xmadl,L)=Xmin(1,L), 1sI<L, (8)
where Thus, plotting log[d?(j)] versusj yields H. One can use a
variety of wavelet functions; we used the Daubechies func-
L tion [21], which is shown in Fig. 1.

' 1
X(0=2 [ =(o)ul, @)= o). ©

C. Covariance analysis

One also calculates the quantfL) given by This method is based on the fact that the variance of the

variablev that obeys the statistics of the FBM is given by

1 L 12
S(L)=’E|21 [v<|>—<v>L]2] : (10

It has been argued thf—7,9 if the data follow the statis-
tics of the FBM, then

Eq. (2). Thus a logarithmic plot of the variance versuss
sufficient for estimatingH. Our main point in using this
method is to check the numerical accuracy of the three meth-
ods that we use to generate the synthetic data array since the
covariance method uses the very definition of a FBM.
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D. Lévy analysis data are then calculated. The window weight function can be
The Levy distribution is a group of symmetric-stable dis- chosen from a number of different choices; here we used the
tributions given by[22] Bartlett window, which for thejth window is given by

1-2|(j—m/2)/m|, wherem is the size of the window. The
1~ disadvantage of this method is that if the data that contain
P(x)= ;JO exd —(Cw)“]cog wx)dw, (149 long-range correlations are grouped into windows, the nature
of the correlations may be masked, unless we have very long

i, data arrays and use large windows.
where 0K a<2 andC>0 are the parameters of the distribu (i) The maximum entropy method (MEMJhis is a

tion. This distribution contains long tails that represent very ethod of estimating the power spectrum without using a

rare events. The presence of long tails in the distributions o . ; ;
the increments of some natural data has led to the consider-FT and thus is subject to far less nojd]. In this method

ation of a general form of complex distributions called thethe power spectrum is approximated by
fractal Levy motions (FLM’s) [23], which have recently

a
been used in the analysis of some seismic and porosity log S(w)= v 9 55 (16
data[24—27. The FLM has stationary increments with a 1+2 K
Lévy-stable distribution given by Eq14) and is character- = Az

ized by the parametad. The increments (x+ Ax) —v(X)
of the variablev, which obeys the statistics of the FBM, are \ypere the coefficients, are calculated such that E(L6)
Gaussian variables and thus the linait=2 corresponds t0 . 5iches the Laurent seri&w)=2","Mbizi. Here z is the
the FBM case. To estimatd, C is evaluated first and its frequency in thez transform plane=e?"“% and A is the

dependence on the lag=x,—X, is monitored. Then it can = gampjing interval in the real space. In practice, to calculate

E;’ shown that the coefficien®(x) are related to the la8  he coefficientsa; one first computes the correlations func-
tions

C(x)~x". (15 1 N

. , b =(vivis))=—— 2 vivi4j, 17
The limit H=1/a corresponds to the case of independent n—Ji=1
increments. For positivénegative correlations(anticorrela- ] . ]
tion) in the increments we havel>1/a (H<1/a). Since Wheren is the number of data points anglis the datum at
P(x) cannot be obtained in closed form, the estimation ofP0inti. The coefficientss; are then calculated from
C and« is difficult and may be subject to some inaccuracies
[28]. However, compared to the FBM, this is a more general
distribution that allows more flexibility in the interpretation
of the data.

M
JZl di-waj=dk, k=12,....M. (18

The advantage of Eq16) over the Laurent series is that if
E. Spectral methods S(w) contains sharp peaks, then H46) can easily detect
) ) them as the peaks may show up as the poles of the equation,
Spectral methods of analyzing the FBM use its powefyhereas one may have to use a very large number of terms in

spectrum given by Eq4). ThusH is estimated from a.plot the Laurent series to detect the same peaks.
of logS(w) versus log. However, the accurate calculation of

the power spectrum is the most important part of the method.

If, for example, the data are noisy, their power spectrum

would be difficult to calculate accurately and therefore the In the roughness-lengttRL) method, the data are first

estimatecH may be subject to great uncertainty. The powergrouped into windows of length Then one calculates the

spectrum can be calculated by a discrete Fourier transform#&oot-mean-squareR,,d residual roughness defined pi0]

tion (DFT), and if the length of the data array is a power of L 1

2, then the FFT method can also be used. The main problem _ .

with this method is the spectral leaks from the other frequen- Remd 1) = n_| 2’1 (ni—2)J-E§\:‘\,i [F)=(B]. (19

cies[21], i.e., in addition to its true range of the frequencies,

the power spectrum also contains components at @tlisr  wheren, is the number of windows of length n; is the

allowed frequencies, which result in an overestimation of number of data points in the windowW/;, and(f) is the

S(w) and thus an underestimation Hf. Therefore, we did average off. f(j) is the residual value &t calculated by

not use a DFT for analyzing the data. Instead, we used tweubtracting the datum gt from the value that is obtained

other methods of calculating the power spectrum of the synfrom the linear trend in the data, obtained either by a linear

thetic data, which are as follows. regression of the data or by connecting the first and the last
(i) The windowed Fourier transformation metho@lhe  data points. It can be shown that

problem of the spectral leaks can be overcome by using a

windowed Fourier transformation method instead of a DFT Remd D ~11, (20

or a FFT alone. In this methd@1], the data are first divided

into windows or sections. To each window is assigned &0 thatH can be estimated from a logarithmic plot of

correponding weight function, and the weighted FFT of theR,,{l) versusl.

F. Roughness-length method




716 MEHRABI, RASSAMDANA, AND SAHIMI 56

1 J e g = 1
.’,/’::" ............................ 512
/ N L PP, - 4096 //
e
0.8h E 08 -—----- 32768 B
Pt
300 7"
......... s
- 3000 Al
—————— 10000 /0
0.61 06r s
2
e
= L e ///f‘
st
0.41 2.0
0.4} ) /_?Z(A
7/,
//‘4.
y ,/
7.7
0.2r ,;-f"
0.2 E y ,/
2
L %
7,
0 s N s . L
0 . . . ) 0 0.2 0.4 0.6 0.8 1
0 0.2 0.4 0.6 0.8 1 H
H

FIG. 3. Same as in Fig. 2, but with the wavelet decomposition

FIG. 2. Estimated Hurst exponehtversus its true valuéi as ~ method.
predicted by th&k/S method. Numbers in the figure denote the size _ o
of the data array, which was generated by a fast Fourier transfo@nce method, which uses the very definition of the FBM,

mation method. show large deviations from the true values; these are shown
in Fig. 4. Although with increasing size of the data array the
IV. RESULTS AND DISCUSSION predictions appear to converge towards the true values of the

. . . Hurst exponent, the convergence is not very fast.

In this section we present the results and discuss the ac- Figure 5 shows the predictions of thé wemethod. In
curacy of each method of analysis. In what folloWsde- s case, the largest data array containedi fidints, as the
notes the value of the Hurst exponent thatseéin order 10 55y sis of the data with this method requires large computer
generate the synthetic data array and is referred to as the trge e Although we obtained=2, as we should for a FBM
value, whileh is the value of the Hurst exponent that We oot for 0.15 H<0.3, the agreement between the predic-
estimateusing the above methods of analysis. Thus, if theo,5"ang the true values &f is not good, although there is
tW? I\_/aluesh\_/vErg thﬁ same, ;clhe;r r[})lo;_ woulddpe a St;a't?hﬁ convergence trend with increasing size of the data array.
45° line, which is shown in all of the figures discussed be-rpoqq regyits indicate that a FFT method does not generate a
low. We first discuss the results for the sy_nthetlc data to p'CK/ery accurate FBM array, unless the size of the lattice is very
the rr]n%s'; accurellte_metﬂod oflddata analysis. We then use thige and care is taken to ensure that periodicity effects as-
method for analyzing the real data. sociated with finite lattices do not have a significant effect.

Moreover, forH>0.5 the size of the system has to be larger
A. Synthetic data

Since we used three different numerical methods for gen- !

erating the synthetic data array, we discuss the results for L 300
each method separately. | - — 3000
0.8 —----- 30000 27

1. Results with the FFT method P

Figure 2 presents the results for tRES method for three -
sizes of the data array. Even for the largest array the predic- o6} Pt
tions are greatly different from the true values. Note also that ,/
for a given array size and regardless of the valueHof I o
roughly the same value dfi is predicted. In fact, Fig. 2 0.4} ol
makes it clear that with increasing array size one eventually L7
hash—1, regardless of the value of H:hus theR/S method . 4
yields completely wrong results for a large data array that V%
obeys the statistics of a FBM. We will return to this point o2r 7
shortly. L

Figure 3 depicts the results with the wavelet decomposi-
tion method for three different array sizes. As can be seen, 0 : : : :
except forH>0.8, as the size of the array increases the pre- 0 02 04 H 06 08 !
dictions appear to converge towards the true values. In con-
trast, except for 0.18H<0.4, the predictions of the covari- FIG. 4. Same as in Fig. 2, but with the covariance method.
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FIG. 5. Same as in Fig. 2, but with the \yemethod of analysis. FIG. 7. Same as in Fig. 2, but with the maxiumum entropy
method.

than that forH<0.5. This assertion is confirmed below
where we discuss the results with the SRA and WM meththeir accuracy is achieved only when the size of the data

ods. array is very large, which in practice does not occur very
Figure 6 presents the results with the windowed FToften. For example, one hardly ever has a porosity log with
method. The agreement between the predictions and the trygore than 1000—2000 data. Finally, Fig. 8 presents the pre-
values is excellent for the two larger sizes of the data arrayictions of the roughness-length method. It is clear that the
over the entire range dfi. The convergence of the predic- convergence of the predictions towards the true values is not
tions towards the true values also appears to be very fastystematic since an array of 3000 data points appears to pro-
However, note that since a FFT was used for generating thgide more accurate predictions than an array dffdints, if
arrays, it is not really surprising that windowed FT methodH > 0.5, with the reverse being trueif<0.5.
provides such accurate predictions. Even more accurate pre-
dictions are provided by the maximum entropy method,
whose predictions are shown in Fig. 7. As can be seen, even _ _
a data array as small as 300 points provides predictions that The R/S method also provides very poor estimates of the
are virtually indistinguishable from the true values. This is atrue values oH if the array is generated by the SRA method,
great advange of this method since although the wavelet arifplying that the inaccuracy of thie/S method has nothing
windowed FT methods also provide accurate predictionsto do with the method of generating the synthetic data array.

2. Results with the SRA method

—
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FIG. 6. Same as in Fig. 2, but with the windowed Fourier trans- FIG. 8. Same as in Fig. 2, but with the roughness-length
formation method. method.
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As in Fig. 2, the predicted Hurst exponent is more or les
independent oH, with h— 1 with increasing size of the data
array. The predictions with the wavelet method are only

larger. Unlike the results shown in Fig. 4, the covarianc
method provides relatively accurate predictions for the tru
values ofH, except whenH<0.2; see Fig. 9. This is not
really surprising, as the SRA method is in some sense th
inverse of the covariance method. This indicates that the a
curacy of the covariance method is sensitively dependen[
upon the accuracy of the data array. Since this method i

€sults with the FFT method shown in Fig. 6, the windowed FT
e : o
method does not provide accurate predictions of, and system-

atic convergence towards, the true valuesHoff the data
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FIG. 10. Same as in Fig. 9, but with thé\yemethod of analy-

sis.
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FIG. 11. Same as in Fig. 9, but with the windowed Fourier

predicted by the covariance method. The data arrays were generaté@nsformation method.
by the successive random addition method.

based on the very definition of the FBM, we may conclude

S:[hat, for a given array size, the SRA method provides a more

accurate technique for generating the FBM array.

Figure 10 depicts the results obtained with thevy.e

slightly more accurate than those obtained with the FFT ar[‘nethOd of analyzing the data. The agreement between the

ray (see Fig. 3 and, moreover, foH>0.9 the approach to
the true values is not systematic as the array size becom

predictions and the true values &f is better than those
gresented in Fig. 5, which were obtained using the data ar-

rgys generated by the FFT method. However, unlike the re-

e

S

drray is generated by SRA method; these are shown in Fig.
1. Similar to the results shown in Fig. 7, which were ob-
ained with the data arrays generated by the FFT method, the
maximum entropy method provides again highly accurate
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FIG. 12. Same as in Fig. 9, but with the roughness-length

method.
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similar to those obtained with the FFT and SRA methods.
We thus conclude that the inaccuracy of & method, a
commonly used method of analyzing complex data and pro-
files, has nothing to do with the method of generating the
data or its accuracy. In practical terms, this means that this
method should not be used for analyzing real data unless one
hasa priori some information about the nature of the corre-
lations in the data.

As with the case of the SRA methgHBig. 9), the covari-
ance method provides accurate estimates of the true Hurst
exponentH and the convergence of its predictions towards
the true values with increasing data array size is systematic.
Thus we conclude that, relatively speaking, the SRA and the
WM methods generate more accurate FBM arrays than does
the FFT method, unless the size of the data array is large.
Compared with the results with the FFT and SRA methods
(Figs. 5 and 1§ the Levy method yields more accurate pre-
dictions for the true values dfi if the data arrays are gen-
erated by the WM method; these are shown in Fig. 13. This
is also the case with the roughness-length method.

FIG. 13. Estimated Hurst exponemtversus its true valuél as Summarizing our results, the wavelet decomposition, win-
predicted by the [ey method. The data arrays were generated bydowed FT, and the maximum entropy methods all provide
the Weierstrass-Mandelbrot algorithm. highly accurate characterizations of long-range correlations

. in synthetic data. However, in terms of the efficiency of the
predictions for.the true values of the Hurst exponent Wherbomputations and the required size of the data array, the
the data array is generated by the SRA method. Again, evegaximum entropy method offers the best tool for analyzing a
an array as small as 300 data points provides very accuragﬁven data array.
estimates ofH. The results with the roughness-length
method, which are shown in Fig. 12, indicate that, unlike the
case with the FFT method, with the SRA method of gener- B. Real data
ating the data arrays, the convergence towards the true value \y/e now analyze two sets of real data. Since our results
of H is systematic as the array size increases. with the synthetic data indicate that the maximum entropy

_ method is the most efficient and accurate tool of analyzing
3. Results with the WM method complex data and their long-range correlations, we use this

As mentioned above, the power spectrum of the data arragethod here. The data that we analyze are a porosity log of
generated by the WM method is discrete and does not cor& carbonate oil reservoir in the Middle East, measured along
tain all the frequencies. Therefore, we analyzed the data ag vertical well, and the time variations of the pressure fluc-
ray generated by this method only with the four methods thatuations in three-phase flow in a fluidized bed. Both sets of
do not require the power spectrum of the data. The analysidata have been analyzed previously by Ri& method, lead-
of the WM data by theR/S method yields results completely ing, as we show here, to erroneous results and conclusions.

0.25 10
0.2
20.15 g
£ 0.1 g
w
0.05
0 FIG. 14. Porosity logitop left), fit of its in-
2300 2400 Dzsrc:o 2600 2700 crements (top right by a Levy distribution
epth [m] Increment (curve and a Gaussian distributioridashed
0 1072 curve, and the analysis of the log by the maxi-
» mum entropy methodbottom lef) and by the
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1. Porosity log of an oil reservoir gions. For largeL’s a fit of the data to Eq(11) yields

H=0.2, whereas for small’s we obtainH=0.65.
Figure 14 shows the porosity log measured between the o o

depths 2350 and 2700 m. To see whether the data actually 2. Pressure fluctuations in a fluidized bed
obey the statistics of a FBMor a FGN, its “derivative”) Gas-liquid-solid fluidized beds, in which solid particles
[3], we formed the increments in the data and constructedre fluidized by a liquid and a gas phase, such as water and
their frequency distribution. If the data do obey the FBM air, have wide applications in the chemical, petrochemical,
statistics, then the frequency distribution of their incrementgaind biochemical industries. The pressure in the bed fluctu-
must be Gaussian. Figure 14 demonstrates clearly that this &es widely and appears to be a stochastic variable. The sto-
not the case. Instead, the \ye distribution with «=0.87  chasticity may be caused by a variety of factors, such as the
data. Most carbonate oil fields in the Middle East have veryc@n help predict the behavior of the system, an unsolved
low porositieg 1,2]. Thus, in this porosity log the rare event, Problem.

o i it I . Figure 15 shows typical pressure fluctuations versus time
characteristic of the Ly stable distribution, may be indica in a three-phase fluidized bed. reported by Rl [29],

tive of a large fracture or fault whose porosity is much larger, 7 . SRR ) .
than that of the matrix around it. Indeed, the oll reservoir,%ﬂékfﬁ;heea%%r;gg Sg‘;a'F}ge1"5'5‘$E;‘S“fn“eg;;hfhg‘tc{ﬁ;“ggi I:re
Whgge porltzlsnly Ioghwe aphalyze, IIS .knom tod bte fgacttr:Jred. either completely random or obey the statistics of the FBM.
Igure L4 alSo Snows the analysis of the data by theé maXipy,o power spectrum of the data determined by the maximum
mum entropy method. As can be seen, at large frequenciegyony method is also shown in Fig. 15. As in the case of

ie., at shor_t distances, the power spectrum of the data ig,e porosity log of Fig. 15, there is a noisy part at high
noisy. This is perhaps due to the fact that the measuremeflequencies. A fit of the spectrum to E€4), ignoring the
equipment does not have high enough resolution to acclypisy part, givesH=0.5, implying that the data are com-
rately measure the porosities at two close neighboring pointgjetely random with no correlations between them. On the
and distinguish between them. At any point, there may als@ther hand, if we use thR/S method, we obtain the results
be interference from the neighboring points, which couldthat are also shown in Fig. 15, which are in agreement with
also give rise to the noise in the data. If we fit the spectrunthose obtained by Faet al. [29]. As in the case of the po-

to Eq. (4) (with d=1), ignoring the noisy part, we obtain rosity log, there are two distinct segments to the results. If
H=0.3<1/a, indicating the existence of long-range negativewe fit the apparently linear part to Eqll), we obtain
correlations in the data; with the noisy part inluded we obtainH=0.8, indicating the existence of long-range positive cor-
H=0.12. The porosity log is consistent with<1/2, as a relations. However, this is clearly wrong, as a high value of
large value of the porosity is followed by a low value, andthe pressure is followed by a low value and vice versa. Thus,
vice versa. Thus the maximum entropy method also allow&s our analysis with the synthetic data already indicated, the
one to separate the noisy part of the data and obtain a red®/S method, which has been used heavily in the past, is not
istic value ofH. Since the coefficient€(x) [see Eq.(14)] @ reliable method of esnmatlrig and characterizing the na-
obey Eq.(15), we also analyzed the data using this equationture of long-range correlations.

We found H=0.34, consistent with the estimate obtained
with maximum entropy method. For comparison, we also
analyzed the data by the/S method, the results of which, We have carried out an extensive analysis of complex
shown in Fig. 14, indicate the existence of two distinct re-distributions and their long-range correlations, in the form of

V. SUMMARY AND CONCLUSIONS
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10° By (bX) —By(0)=b"[B(x) —Bn(0)], (21)

whereb is any scale factor, then the functi@p(Ax) should
be proportional tgAx|™. This implies, according to Mandel-
brot and Wallig[6], thatR(x)~x", or

| ] R(L)~L". (22

Feder[9] states that the true variance for the normalized
FBM is S=1; thus, together with Eq22), one obtains Eq.
(11). However, as mentioned above, it is well known that the
variance of a large-enough FBM array is divergent. Accord-
» ing to Eq.(10) for largeL, S? is proportional to the variance

0 5 of the FBM, which, together with Eq(2), implies that

10
L 10 S?(L)~L2?" and thus

S(L)~LH. (23

This is precisely what we find in our synthetic data; see Fig.
16. We also find that, contrary to E(R2),

10° | ] R(L)~L*H, (24)

» This can also be seen by inspecting E@.and (9). If we

replace the variable by By(x), then Eqs(8) and(9) tell us

1] ] that R(L) ~=[ By (x) —(By(x))]. Since the argument of the

sum is proportional ta.", if we replace the sum by an inte-

gral, we obtain Eq(24), and therefordR(L)/S(L)~L. This

hd means thatf the data array is large enough, one should

-2 always obtain a Hurst exponent=HL, in agreement with our

10° 10° results. To the best of our knowledge, HG4) has never

L appeared in the literature before. We also mention that Hardy

and Beiel 30] state that fthe] R/S analysis fails fof FBM]

FIG. 16. Logarithmic plots oR(L)/L andS(L) versusL for a  since it yieldsH=1.0,” in complete agreement with our re-
FBM array of 32 000 points. The true valuedfis 0.33, while the  sults, although these authors do not provide any reasoning or
slope of the straight lines id=0.34 (top) and H=0.36 (bottom). results in support of their statement. However, we must point

out that if we generate a FBM array, calculate the increments

synthetic and real data. The synthetic data were generated fy e data arraythat is, subtract the neighboring points in

a fractional Brownian motion using three different methodst '€ &ay to form a new array, and analyze it with tRéS
ifnethod, the estimated values of the Hurst exponents are in

ferent methods. Our analysis indicates that the size of théeasonable agreement with their true values. However, the

data array greatly influences the accuracy of the estimates oF wharre_ly |s|es_se|nt|ally a FG!}‘ z;:rray and thereforeR}r‘]G
the various parameters that one may wish to extract from thme.t od is relatively accurate if the data array obey the sta-
data fistics of a FGN, but not a FBM.

- ) On the other hand, Eq$23) and (24) suggest alternative
A surprising result of our study is that the commonly uSedy, ath0s of analyzing the FBM data: Make a logarithmic plot

rescaled-range methpd of analysis appears to be unreliablg; S(L), R(L), or R(L)/L versusL. The slopes of the result-
Mandelbrot and Wallig6] have already pointed out several ing straight lines aréd, 1+ H, andH, respectively. As an

weaknesses of this method, some of which are as follGwvs. example, we show in Fig. 16 the results for R method.

The plot of logR/S versus logL may not be linear, unless The size of the data array is 32 000, the true valuéids

the sample size is large. In our study we do use large datg 34, and the plot yieldsl =0.36.

arrays. Even our real data arrays are relatively lafigeThe We find that the maximum entropy method offers a fast,

estimateh of the Hurst exponent approaches the true valuefficient, and reliable method of analyzing the data and

H only asymtotically. However, we find that with increasing yields accurate estimates of the Hurst exponent even with a

size of the data array the estimated Hurst exponent apmall data array. The wavelet decomposition method is also

proaches 1 instead of its true valugi.) The R/S method is  accurate, but its necessary computations and size of the data

notrobust to cyclic effects. In our work we always generatedarray for obtaining reliable results are much larger than those

a large array and analyzed only the central part of it; thus thisf the maximum entropy method. Thus we believe that in

effect should not be important. practical applications the maximum entropy method should
We believe that the theoretical reason for the failure of thébe used and great caution should be taken if any other

R/S method is as follows. Since for a FBM one H&g method is to be employed.
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We also point out that, as Vo$381] suggested, the Hurst for example, the spectral methods are more sensitive to the
exponentH is related to the fractal dimensidd; of a FBM  length of the data array, whereas the RL method is more
profile throughD;=2—H. This has been exploited by sev- sensitive to the true value dt.
eral authorg32-34 for estimatingH by using a variational
method to determin®;. Thus the Hurst exponent can also ACKNOWLEDGMENTS
be determined indirectly. This work was supported in part by the Petroleum Re-

Finally, another important conclusion of our work is that search Fund, administered by the American Chemical Soci-
when analyzing a given set of data, one should use two difety. A.R.M. is grateful to the John and Alice Tylor Fund for
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