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Characterization of long-range correlations in complex distributions and profiles
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Characterizing long-range correlations in complex distributions, such as the porosity logs of field-scale
porous media, and profiles, such as the fracture surfaces of rock and materials, is an important problem. We
carry out an extensive analysis of such distributions represented by synthetic and real data to determine which
method provides the most efficient and accurate tool for characterizing them. The synthetic data and profiles
are generated by a fractional Brownian motion~FBM! and the real data analyzed are a porosity log of an oil
reservoir and time variations of the pressure fluctuations in three-phase flow in a fluidized bed. The FBM is
generated by three different numerical methods and the data are analyzed by seven different techniques. Our
analysis indicates that the size of the data array greatly influences the accuracy of characterization of its
long-range correlations. We also find that if the size of the data array is large enough, the commonly used
rescaled-range (R/S) method of analyzing FBM series fails to provide accurate estimates of the Hurst expo-
nent, although it can provide a reasonably accurate analysis of a data array that is generated by a fractional
Gaussian noise. In contrast, the maximum entropy and wavelet decomposition methods offer highly accurate
and efficient tools of characterizing long-range correlations in complex distributions and profiles. New methods
that are somewhat similar to theR/Smethod are also suggested.@S1063-651X~97!05407-X#

PACS number~s!: 47.55.Mh, 05.40.1j, 47.53.1n
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I. INTRODUCTION

Field-scale porous media~FSPM!, such as oil reservoirs
and groundwater aquifers, are highly heterogeneous at m
length scales. Their heterogeneities manifest themselve
three different scales, which are~i! microscopic, which is at
the level of pores and grains;~ii ! macroscopic, which is a
the level of core plugs; and~iii ! megascopic, which include
the entire reservoir or aquifer. Modeling flow and transp
in such porous media depends crucially on the characte
tion of their structure and in particular the distributions
their heterogeneities. However, although the characteriza
of laboratory-scale~macroscopic! porous media has bee
done in great detail and a reasonable understanding of t
has been obtained@1,2#, the same is not true about FSPM
whose characterization is plagued by a lack of sufficient d
and hampered by the wide variations in the data that
collected at various locations throughout the system.

Two important characteristics of FSPM are their poros
logs, often collected byin situmethods, and their permeabi
ity distributions, which are usually obtained by collecting
number of core plugs at various depths along a vertical~or
horizontal! well. In a pioneering work, Hewett@3# proposed
that the porosity logs and permeability distributions of FSP
obey fractal statistics. More specifically, he provided e
dence that the porosity logs in the direction perpendicula
the bedding may obey the statistics of fractional Gauss
noise ~FGN!, while those parallel to the bedding follow
fractional Brownian motion~FBM!, which is a stochastic
processBH(r ) @4# with the properties

^BH~r !2BH~r0!&50 , ~1!

^@BH~r !2BH~r0!#
2&;ur2r0u2H, ~2!
561063-651X/97/56~1!/712~11!/$10.00
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where r5(x,y,z) and r 05(x0 ,y0 ,z0) are two arbitrary
points andH is the Hurst exponent. A remarkable proper
of the FBM is that it generates correlations whose exten
infinite ~i.e., it is as large as the linear size of the system!. For
example, consider the one-dimensional case and defin
incremental correlation functionC(x) of the ‘‘future’’ incre-
mentsBH(x) with the ‘‘past’’ incrementsBH(2x) by ~the
meaning of past and future becomes clear if we replacx
with a time variable!

C~x!5
^2BH~2x!BH~x!&

^BH~x!2&
; ~3!

then one finds thatC(x)52(22H2121), independentof x.
Moreover, the type of correlations can be tuned by vary
H. If H.1/2, thenC(x).0 and the FBM displayspersis-
tence, i.e., a trend~for example, a high or low value! at x is
likely to be followed by a similar trend atx1Dx. If
H,1/2, thenC(x),0 and the FBM generatesantipersis-
tence, i.e., a trend atx is not likely to be followed by a
similar trend atx1Dx. ForH51/2 the trace of the FBM is
similar to that of a random walk and theincrementsare un-
correlated.

A convenient way of representing a distribution functio
is through its spectral densityS(v), the Fourier transform of
its variance. For ad-dimensional FBM it can be shown tha

S~v!5
1

S (
i51

d

v i
2D H1d/2

, ~4!

wherev5(v1 , . . . ,vd). Fractional Brownian motion is sta
tionary, but not ergodic. Its variance for a large enough ar
is divergent. It is not differentiable, but by smoothing it ove
712 © 1997 The American Physical Society
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56 713CHARACTERIZATION OF LONG-RANGE CORRELATIONS . . .
an interval one can obtain its ‘‘derivative’’ numerically
which is the FGN whose spectral density in, e.g., one dim
sion, is given by

S~v!5
1

v2H21 . ~5!

We should point out that ifv is a random variable that obey
the statistics of the FBM, then the incremen
v(r1Dr )2v(r ) are Gaussian random variables.

It is clear that the Hurst exponentH determines the natur
of the correlations. Moreover, givenH, one can generate th
porosity logs and the permeability distributions for use in
simulation of flow and transport in FSPM if such properti
follow the statistics of a FBM or afGn. Thus, given a po-
rosity log or a permeability distribution of a porous mediu
how can one accurately determine the associated valu
H? The most widely used method of estimatingH is the
rescaled-range (R/S) analysis~described below!, first devel-
oped by Hurstet al. @5# and analyzed exhaustively by Man
delbrot and Wallis@6# and Wallis and Matalas@7#. Accord-
ing to Mandelbrot and Wallis@6#, this method is very robust
However, in the course of analyzing extensive field data
the porosity logs and permeability distributions of an oil re
ervoir in the Middle East, it appeared to us that, while t
R/S method may be robust, it is not very accurate in t
sense that it yields roughly the same value ofH regardless of
the data. This prompted us to undertake a systematic ana
of the data, as well as synthetic data generated by a FBM
a variety of methods to see which method provides the m
accurate description of them and an estimate of the ass
ated value ofH. The purpose of this paper is to report th
results of this analysis. This issue has already been inv
gated by a few authors@8–11#; however, Refs.@8,9# con-
cerned themselves mainly with the accuracy of theR/S
method, whereas our goal here is to test various method
analyzing the data. Reference@10# did not study the problem
systematically, while Schmittbuhlet al. @11# did not investi-
gate several important issues and methods that we discu
this paper~see below!.

The problem that we study is, however, more general
not restricted to analyzing complex distributions, such as
rosity logs. In recent years, the description of scale-invar
properties of disordered systems by fractal analysis has
come very fashionable. The concept of self-similarity
fractal systems@12# has been extended@13# to anisotropic
systems through the notion of self-affinity, which implie
that the scale invariance of an anisotropic fractal system
preserved only if the scale factors are direction depend
Examples include the profiles that are generated by a F
or a FGN. There are also a large number of natural syst
that are self-affine@14#, an example of which is fracture su
faces of materials and natural rock@1,2,15–17#. If we con-
sider a two-dimensional cut, or a roughness profile, of s
systems, then the average height of the profile scales wit
lengthL asLH, whereH is again the Hurst exponent. Ther
fore, if we digitize such a profile to estimate its Hurst exp
nent, we will be faced with the same task as analyzin
complex distribution and describing its long-range corre
tions.
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The plan of this paper is as follows. In Sec. II we discu
numerical generation of the synthetic data by a FBM and
sensitivity to the accuracy of the method and the size of
data array. In Sec. III we describe the methods that we us
analyze the data, while Sec. IV presents the results of
analysis of the synthetic and real data and a discussio
their implications. The paper is summarized in Sec. V.

II. GENERATION OF SYNTHETIC DATA

Since the real data that we analyze are one dimensio
the synthetic data are also generated by a one-dimens
FBM for which there are a number of numerical methods.
one goal of our paper is to see which method is the m
accurate, we used three different numerical methods for g
erating a one-dimensional FBM, a brief description of ea
is given below. For each method, each value ofH, and each
size of the FBM array, we generated 100 different reali
tions of the FBM, and the results that are discussed be
represent the averages over all the realizations. The typ
standard deviation among all of the realizations was ab
65% of the average values. We used 20 values ofH,
equally spaced in@0,1#.

A. Fast Fourier transformation

Equation~4! provides a convenient method of generati
an array of numbers that obey the FBM statistics, using a
Fourier transform~FFT! technique. In this method, one firs
generates random numbers, uniformly distributed in@0,1!,
and assigns them to the sites of ad-dimensional lattice,
which in our case is a linear chain. The Fourier transform
the resultingd-dimensional array of the numbers is then c
culated numerically. The Fourier-transformed numbers
then multiplied byAS(v) and the results are then invers
Fourier transformed back into the real space. The number
obtained obey the FBM statistics with the desired long-ran
correlations. To avoid the problem associated with the p
odicity of the numbers arising as a result of their Four
transforming, one has to generate the array with a m
larger lattice size than the actual size that is used in
analysis and use the central part of the array. In the disc
sion of our results, when we refer to the size of the synthe
data array we mean the size of the central part of the F
array that we used in our study.

B. Successive random additions

In the successive random addition~SRA! method@18# one
starts with the two end points on@0,1# and assigns a zero
value to them. Then Gaussian random numbersD0 are added
to these values. In the next stage, new points are added
fraction r of the previous stage by interpolating between t
old points ~by either linear or spline interpolation! and
Gaussian random numbersD1 are added to the new points
Thus, given a sample ofNi points at stagei with resolution
l, stagei11 with resolutionrl is determined by first inter-
polating theNi115Ni /r new points from the old points an
then Gaussian random numbersD i are added to all of the
new points. At stagei with r,1, the Gaussian random num
bers have a variance@see Eq.~2!#
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714 56MEHRABI, RASSAMDANA, AND SAHIMI
s i
2;r 2iH . ~6!

This process is continued until the desired length of the d
array is reached. Here we use a value ofr51/2 to generate
the FBM’s with different values ofH.

C. The Weierstrass-Mandelbrot algorithm

In the Weierstrass-Mandelbrot~WM! method @18# one
first divides the interval@0,1# into n21 equally spaced sub
intervals, wheren is the size of the data array that we wish
generate, and assigns zero value to all the points in the
terval. Then, to pointi at a distancexi from the origin one
adds a random number generated by the Weierstrass fun
defined by

W~xi !5 (
j52`

`

Cjr
jHsin~2pr2 j xi1f j !, ~7!

whereCj andf j are random numbers distributed accordi
to Gaussian and uniform distributions, respectively, andr is
a measure of the distance between the frequencies, whi
usually chosen to be small, so that the distance is small;
usedr50.9. The variance ofCj is proportional tor

2 jH and
the random phasesf j are distributed uniformly on@0,2p#.
Usually, the infinite series in Eq.~7! is approximated by a
finite number of terms; we used up to 140 terms
270< j<70 to ensure its accuracy. The power spectrum
the data array generated by the WM method is discrete
does not contain all the frequencies. However, its spec
density is still proportional tov2(2H11), in agreement with
Eq. ~4!.

III. METHODS OF ANALYSIS

As mentioned above, we have used several method
analyzing the synthetic and real data. Our goal is to test
accuracy and efficiency of each method and their poss
sensitivity to various factors that may affect their perfo
mance, e.g., the size of the data array. What follows is a b
description of all the methods that we have used.

A. Rescaled-range analysis

Suppose that a variablev takes the valuev( l ) at position
l . In theR/Smethod one calculatesR(L) by

R~L !5Xmax~ l ,L !2Xmin~ l ,L !, 1< l<L, ~8!

where

X~ l ,L !5 (
u51

l

@v~u!2^v&L#, ^v&L5
1

L(l51

L

v~ l !. ~9!

One also calculates the quantityS(L) given by

S~L !5H 1L(l51

L

@v~ l !2^v&L#2J 1/2. ~10!

It has been argued that@5–7,9# if the data follow the statis-
tics of the FBM, then
ta
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R~L !

S~L !
;LH, ~11!

so that a logarithmic plot ofR(L)/S(L) versusL yieldsH.

B. Orthonormal wavelet decomposition method

Wavelet decomposition analysis, which is a space-sc
decomposition method, is a suitable tool for analyzing
FBM. Using discrete orthonormal wavelet decomposition
a one-dimensional FBM, we obtain@19#

Dj~k!522 j /2E
2`

`

BH~x!c~22 j x2k!dx, ~12!

whereDj (k) are the wavelet-detail coefficients of the FBM
c is the wavelet function,k51,2, . . . ,n, wheren is the size
of the data array, and thej ’s are integers. Thus, in this
method one fixesj and variesk to calculateDj (k). For each
j one determinesn such numbers and calculates their va
ances2( j ). Then it can be shown that, regardless of t
wavelet functionc, one has@19,20#

log2@s2~ j !#5~2H11! j1const. ~13!

Thus, plotting log2@s
2(j)# versusj yieldsH. One can use a

variety of wavelet functions; we used the Daubechies fu
tion @21#, which is shown in Fig. 1.

C. Covariance analysis

This method is based on the fact that the variance of
variablev that obeys the statistics of the FBM is given b
Eq. ~2!. Thus a logarithmic plot of the variance versusx is
sufficient for estimatingH. Our main point in using this
method is to check the numerical accuracy of the three m
ods that we use to generate the synthetic data array sinc
covariance method uses the very definition of a FBM.

FIG. 1. Daubechies functionc(x) used in the wavelet decom
position method.
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56 715CHARACTERIZATION OF LONG-RANGE CORRELATIONS . . .
D. Lévy analysis

The Lévy distribution is a group of symmetric-stable di
tributions given by@22#

P~x!5
1

pE0
`

exp@2~Cv!a#cos~vx!dv, ~14!

where 0,a<2 andC.0 are the parameters of the distrib
tion. This distribution contains long tails that represent ve
rare events. The presence of long tails in the distribution
the increments of some natural data has led to the cons
ation of a general form of complex distributions called t
fractal Lévy motions ~FLM’s! @23#, which have recently
been used in the analysis of some seismic and porosity
data @24–27#. The FLM has stationary increments with
Lévy-stable distribution given by Eq.~14! and is character-
ized by the parameterH. The incrementsv(x1Dx)2v(x)
of the variablev, which obeys the statistics of the FBM, a
Gaussian variables and thus the limita52 corresponds to
the FBM case. To estimateH, C is evaluated first and its
dependence on the lagx5x22x1 is monitored. Then it can
be shown that the coefficientsC(x) are related to the lagx
by

C~x!;xH. ~15!

The limit H51/a corresponds to the case of independ
increments. For positive~negative! correlations~anticorrela-
tion! in the increments we haveH.1/a (H,1/a). Since
P(x) cannot be obtained in closed form, the estimation
C anda is difficult and may be subject to some inaccurac
@28#. However, compared to the FBM, this is a more gene
distribution that allows more flexibility in the interpretatio
of the data.

E. Spectral methods

Spectral methods of analyzing the FBM use its pow
spectrum given by Eq.~4!. ThusH is estimated from a plo
of logS(v) versus logv. However, the accurate calculation
the power spectrum is the most important part of the meth
If, for example, the data are noisy, their power spectr
would be difficult to calculate accurately and therefore
estimatedH may be subject to great uncertainty. The pow
spectrum can be calculated by a discrete Fourier transfor
tion ~DFT!, and if the length of the data array is a power
2, then the FFT method can also be used. The main prob
with this method is the spectral leaks from the other frequ
cies@21#, i.e., in addition to its true range of the frequencie
the power spectrum also contains components at other~dis-
allowed! frequencies, which result in an overestimation
S(v) and thus an underestimation ofH. Therefore, we did
not use a DFT for analyzing the data. Instead, we used
other methods of calculating the power spectrum of the s
thetic data, which are as follows.

(i) The windowed Fourier transformation method.The
problem of the spectral leaks can be overcome by usin
windowed Fourier transformation method instead of a D
or a FFT alone. In this method@21#, the data are first divided
into windows or sections. To each window is assigned
correponding weight function, and the weighted FFT of t
y
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data are then calculated. The window weight function can
chosen from a number of different choices; here we used
Bartlett window, which for thej th window is given by
122u( j2m/2)/mu, wherem is the size of the window. The
disadvantage of this method is that if the data that con
long-range correlations are grouped into windows, the na
of the correlations may be masked, unless we have very l
data arrays and use large windows.

(ii) The maximum entropy method (MEM).This is a
method of estimating the power spectrum without using
FFT and thus is subject to far less noise@21#. In this method
the power spectrum is approximated by

S~v!.
a0

U11 (
k51

M

akz
kU2

, ~16!

where the coefficientsak are calculated such that Eq.~16!
matches the Laurent seriesS(v)5(2M

M biz
i . Here z is the

frequency in thez transform planez[e2p ivD andD is the
sampling interval in the real space. In practice, to calcul
the coefficientsai one first computes the correlations fun
tions

f j5^v iv i1 j&.
1

n2 j (
i51

n2 j

v iv i1 j , ~17!

wheren is the number of data points andv i is the datum at
point i . The coefficientsai are then calculated from

(
j51

M

f u j2kuaj5fk , k51,2, . . . ,M . ~18!

The advantage of Eq.~16! over the Laurent series is that
S(v) contains sharp peaks, then Eq.~16! can easily detect
them as the peaks may show up as the poles of the equa
whereas one may have to use a very large number of term
the Laurent series to detect the same peaks.

F. Roughness-length method

In the roughness-length~RL! method, the data are firs
grouped into windows of lengthl . Then one calculates th
root-mean-square (Rrms) residual roughness defined by@10#

Rrms~ l !5
1

nl
(
i51

nl A 1

~ni22! (
jPWi

@ f ~ j !2^ f &#, ~19!

wherenl is the number of windows of lengthl , ni is the
number of data points in the windowWi , and ^ f & is the
average off . f ( j ) is the residual value atj calculated by
subtracting the datum atj from the value that is obtained
from the linear trend in the data, obtained either by a lin
regression of the data or by connecting the first and the
data points. It can be shown that

Rrms~ l !; l H, ~20!

so that H can be estimated from a logarithmic plot o
Rrms( l ) versusl .
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716 56MEHRABI, RASSAMDANA, AND SAHIMI
IV. RESULTS AND DISCUSSION

In this section we present the results and discuss the
curacy of each method of analysis. In what followsH de-
notes the value of the Hurst exponent that weset in order to
generate the synthetic data array and is referred to as the
value, whileh is the value of the Hurst exponent that w
estimateusing the above methods of analysis. Thus, if
two values were the same, their plot would be a strai
45° line, which is shown in all of the figures discussed b
low. We first discuss the results for the synthetic data to p
the most accurate method of data analysis. We then use
method for analyzing the real data.

A. Synthetic data

Since we used three different numerical methods for g
erating the synthetic data array, we discuss the results
each method separately.

1. Results with the FFT method

Figure 2 presents the results for theR/Smethod for three
sizes of the data array. Even for the largest array the pre
tions are greatly different from the true values. Note also t
for a given array size and regardless of the value ofH,
roughly the same value ofh is predicted. In fact, Fig. 2
makes it clear that with increasing array size one eventu
hash→1, regardless of the value of H.Thus theR/Smethod
yields completely wrong results for a large data array t
obeys the statistics of a FBM. We will return to this poi
shortly.

Figure 3 depicts the results with the wavelet decompo
tion method for three different array sizes. As can be se
except forH.0.8, as the size of the array increases the p
dictions appear to converge towards the true values. In c
trast, except for 0.15,H,0.4, the predictions of the covar

FIG. 2. Estimated Hurst exponenth versus its true valueH as
predicted by theR/Smethod. Numbers in the figure denote the s
of the data array, which was generated by a fast Fourier trans
mation method.
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ance method, which uses the very definition of the FB
show large deviations from the true values; these are sh
in Fig. 4. Although with increasing size of the data array t
predictions appear to converge towards the true values o
Hurst exponent, the convergence is not very fast.

Figure 5 shows the predictions of the Le´vy method. In
this case, the largest data array contained 104 points, as the
analysis of the data with this method requires large comp
times. Although we obtaineda.2, as we should for a FBM
except for 0.15,H,0.3, the agreement between the pred
tions and the true values ofH is not good, although there i
a convergence trend with increasing size of the data ar
These results indicate that a FFT method does not gener
very accurate FBM array, unless the size of the lattice is v
large and care is taken to ensure that periodicity effects
sociated with finite lattices do not have a significant effe
Moreover, forH.0.5 the size of the system has to be larg

r-

FIG. 3. Same as in Fig. 2, but with the wavelet decomposit
method.

FIG. 4. Same as in Fig. 2, but with the covariance method
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56 717CHARACTERIZATION OF LONG-RANGE CORRELATIONS . . .
than that forH,0.5. This assertion is confirmed belo
where we discuss the results with the SRA and WM me
ods.

Figure 6 presents the results with the windowed
method. The agreement between the predictions and the
values is excellent for the two larger sizes of the data ar
over the entire range ofH. The convergence of the predic
tions towards the true values also appears to be very
However, note that since a FFT was used for generating
arrays, it is not really surprising that windowed FT meth
provides such accurate predictions. Even more accurate
dictions are provided by the maximum entropy metho
whose predictions are shown in Fig. 7. As can be seen, e
a data array as small as 300 points provides predictions
are virtually indistinguishable from the true values. This is
great advange of this method since although the wavelet
windowed FT methods also provide accurate predictio

FIG. 5. Same as in Fig. 2, but with the Le´vy method of analysis.

FIG. 6. Same as in Fig. 2, but with the windowed Fourier tra
formation method.
-
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their accuracy is achieved only when the size of the d
array is very large, which in practice does not occur ve
often. For example, one hardly ever has a porosity log w
more than 1000–2000 data. Finally, Fig. 8 presents the
dictions of the roughness-length method. It is clear that
convergence of the predictions towards the true values is
systematic since an array of 3000 data points appears to
vide more accurate predictions than an array of 104 points, if
H.0.5, with the reverse being true ifH,0.5.

2. Results with the SRA method

TheR/Smethod also provides very poor estimates of t
true values ofH if the array is generated by the SRA metho
implying that the inaccuracy of theR/Smethod has nothing
to do with the method of generating the synthetic data arr

-

FIG. 7. Same as in Fig. 2, but with the maxiumum entro
method.

FIG. 8. Same as in Fig. 2, but with the roughness-len
method.
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718 56MEHRABI, RASSAMDANA, AND SAHIMI
As in Fig. 2, the predicted Hurst exponent is more or le
independent ofH, with h→1 with increasing size of the dat
array. The predictions with the wavelet method are o
slightly more accurate than those obtained with the FFT
ray ~see Fig. 3! and, moreover, forH.0.9 the approach to
the true values is not systematic as the array size beco
larger. Unlike the results shown in Fig. 4, the covarian
method provides relatively accurate predictions for the t
values ofH, except whenH,0.2; see Fig. 9. This is no
really surprising, as the SRA method is in some sense
inverse of the covariance method. This indicates that the
curacy of the covariance method is sensitively depend
upon the accuracy of the data array. Since this metho

FIG. 10. Same as in Fig. 9, but with the Le´vy method of analy-
sis.

FIG. 9. Estimated Hurst exponenth versus its true valueH as
predicted by the covariance method. The data arrays were gene
by the successive random addition method.
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based on the very definition of the FBM, we may conclu
that, for a given array size, the SRA method provides a m
accurate technique for generating the FBM array.

Figure 10 depicts the results obtained with the Le´vy
method of analyzing the data. The agreement between
predictions and the true values ofH is better than those
presented in Fig. 5, which were obtained using the data
rays generated by the FFT method. However, unlike the
sults with the FFT method shown in Fig. 6, the windowed
method does not provide accurate predictions of, and syst
atic convergence towards, the true values ofH if the data
array is generated by SRA method; these are shown in
11. Similar to the results shown in Fig. 7, which were o
tained with the data arrays generated by the FFT method
maximum entropy method provides again highly accur

FIG. 12. Same as in Fig. 9, but with the roughness-len
method.

ted

FIG. 11. Same as in Fig. 9, but with the windowed Four
transformation method.
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predictions for the true values of the Hurst exponent wh
the data array is generated by the SRA method. Again, e
an array as small as 300 data points provides very accu
estimates ofH. The results with the roughness-leng
method, which are shown in Fig. 12, indicate that, unlike
case with the FFT method, with the SRA method of gen
ating the data arrays, the convergence towards the true v
of H is systematic as the array size increases.

3. Results with the WM method

As mentioned above, the power spectrum of the data a
generated by the WM method is discrete and does not c
tain all the frequencies. Therefore, we analyzed the data
ray generated by this method only with the four methods t
do not require the power spectrum of the data. The anal
of the WM data by theR/Smethod yields results completel

FIG. 13. Estimated Hurst exponenth versus its true valueH as
predicted by the Le´vy method. The data arrays were generated
the Weierstrass-Mandelbrot algorithm.
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similar to those obtained with the FFT and SRA metho
We thus conclude that the inaccuracy of theR/S method, a
commonly used method of analyzing complex data and p
files, has nothing to do with the method of generating
data or its accuracy. In practical terms, this means that
method should not be used for analyzing real data unless
hasa priori some information about the nature of the corr
lations in the data.

As with the case of the SRA method~Fig. 9!, the covari-
ance method provides accurate estimates of the true H
exponentH and the convergence of its predictions towar
the true values with increasing data array size is system
Thus we conclude that, relatively speaking, the SRA and
WM methods generate more accurate FBM arrays than d
the FFT method, unless the size of the data array is la
Compared with the results with the FFT and SRA metho
~Figs. 5 and 10!, the Lévy method yields more accurate pre
dictions for the true values ofH if the data arrays are gen
erated by the WM method; these are shown in Fig. 13. T
is also the case with the roughness-length method.

Summarizing our results, the wavelet decomposition, w
dowed FT, and the maximum entropy methods all prov
highly accurate characterizations of long-range correlati
in synthetic data. However, in terms of the efficiency of t
computations and the required size of the data array,
maximum entropy method offers the best tool for analyzin
given data array.

B. Real data

We now analyze two sets of real data. Since our res
with the synthetic data indicate that the maximum entro
method is the most efficient and accurate tool of analyz
complex data and their long-range correlations, we use
method here. The data that we analyze are a porosity lo
a carbonate oil reservoir in the Middle East, measured al
a vertical well, and the time variations of the pressure flu
tuations in three-phase flow in a fluidized bed. Both sets
data have been analyzed previously by theR/Smethod, lead-
ing, as we show here, to erroneous results and conclusio

y

i-
FIG. 14. Porosity log~top left!, fit of its in-
crements ~top right! by a Lévy distribution
~curve! and a Gaussian distribution~dashed
curve!, and the analysis of the log by the max
mum entropy method~bottom left! and by the
R/Smethod~bottom right!.
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FIG. 15. Pressure fluctuations versus time
three-phase flow in a fluidized bed~top left!, fit of
its increments by a Gaussian distribution~top
right!, and its analysis by the maximum entrop
method ~bottom left! and by theR/S method
~bottom right!.
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1. Porosity log of an oil reservoir

Figure 14 shows the porosity log measured between
depths 2350 and 2700 m. To see whether the data actu
obey the statistics of a FBM~or a FGN, its ‘‘derivative’’!
@3#, we formed the increments in the data and construc
their frequency distribution. If the data do obey the FB
statistics, then the frequency distribution of their increme
must be Gaussian. Figure 14 demonstrates clearly that th
not the case. Instead, the Le´vy distribution with a.0.87
appears to provide an excellent fit of the increments in
data. Most carbonate oil fields in the Middle East have v
low porosities@1,2#. Thus, in this porosity log the rare even
characteristic of the Le´vy stable distribution, may be indica
tive of a large fracture or fault whose porosity is much larg
than that of the matrix around it. Indeed, the oil reservo
whose porosity log we analyze, is known to be fractured

Figure 14 also shows the analysis of the data by the m
mum entropy method. As can be seen, at large frequen
i.e., at short distances, the power spectrum of the dat
noisy. This is perhaps due to the fact that the measurem
equipment does not have high enough resolution to ac
rately measure the porosities at two close neighboring po
and distinguish between them. At any point, there may a
be interference from the neighboring points, which cou
also give rise to the noise in the data. If we fit the spectr
to Eq. ~4! ~with d51), ignoring the noisy part, we obtai
H.0.3,1/a, indicating the existence of long-range negati
correlations in the data; with the noisy part inluded we obt
H.0.12. The porosity log is consistent withH,1/2, as a
large value of the porosity is followed by a low value, a
vice versa. Thus the maximum entropy method also allo
one to separate the noisy part of the data and obtain a
istic value ofH. Since the coefficientsC(x) @see Eq.~14!#
obey Eq.~15!, we also analyzed the data using this equati
We foundH.0.34, consistent with the estimate obtain
with maximum entropy method. For comparison, we a
analyzed the data by theR/S method, the results of which
shown in Fig. 14, indicate the existence of two distinct
e
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gions. For largeL ’s a fit of the data to Eq.~11! yields
H50.2, whereas for smallL ’s we obtainH.0.65.

2. Pressure fluctuations in a fluidized bed

Gas-liquid-solid fluidized beds, in which solid particle
are fluidized by a liquid and a gas phase, such as water
air, have wide applications in the chemical, petrochemic
and biochemical industries. The pressure in the bed flu
ates widely and appears to be a stochastic variable. The
chasticity may be caused by a variety of factors, such as
motion of the fluidized particles. Modeling such fluctuatio
can help predict the behavior of the system, an unsol
problem.

Figure 15 shows typical pressure fluctuations versus t
in a three-phase fluidized bed, reported by Fanet al. @29#.
Unlike the porosity data, the distribution of the increments
roughly Gaussian; see Fig. 15. This means that the data
either completely random or obey the statistics of the FB
The power spectrum of the data determined by the maxim
entropy method is also shown in Fig. 15. As in the case
the porosity log of Fig. 15, there is a noisy part at hi
frequencies. A fit of the spectrum to Eq.~4!, ignoring the
noisy part, givesH.0.5, implying that the data are com
pletely random with no correlations between them. On
other hand, if we use theR/Smethod, we obtain the result
that are also shown in Fig. 15, which are in agreement w
those obtained by Fanet al. @29#. As in the case of the po
rosity log, there are two distinct segments to the results
we fit the apparently linear part to Eq.~11!, we obtain
H.0.8, indicating the existence of long-range positive c
relations. However, this is clearly wrong, as a high value
the pressure is followed by a low value and vice versa. Th
as our analysis with the synthetic data already indicated,
R/Smethod, which has been used heavily in the past, is
a reliable method of estimatingH and characterizing the na
ture of long-range correlations.

V. SUMMARY AND CONCLUSIONS

We have carried out an extensive analysis of comp
distributions and their long-range correlations, in the form
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synthetic and real data. The synthetic data were generate
a fractional Brownian motion using three different metho
and the resulting data arrays were analyzed with seven
ferent methods. Our analysis indicates that the size of
data array greatly influences the accuracy of the estimate
the various parameters that one may wish to extract from
data.

A surprising result of our study is that the commonly us
rescaled-range method of analysis appears to be unreli
Mandelbrot and Wallis@6# have already pointed out sever
weaknesses of this method, some of which are as follows~i!
The plot of logR/S versus logL may not be linear, unles
the sample size is large. In our study we do use large d
arrays. Even our real data arrays are relatively large.~ii ! The
estimateh of the Hurst exponent approaches the true va
H only asymtotically. However, we find that with increasin
size of the data array the estimated Hurst exponent
proaches 1 instead of its true value.~iii ! TheR/Smethod is
not robust to cyclic effects. In our work we always generat
a large array and analyzed only the central part of it; thus
effect should not be important.

We believe that the theoretical reason for the failure of
R/Smethod is as follows. Since for a FBM one has@9#

FIG. 16. Logarithmic plots ofR(L)/L andS(L) versusL for a
FBM array of 32 000 points. The true value ofH is 0.33, while the
slope of the straight lines isH.0.34 ~top! andH.0.36 ~bottom!.
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BH~bx!2BH~0!5bH@BH~x!2BH~0!#, ~21!

whereb is any scale factor, then the functionBH(Dx) should
be proportional touDxuH. This implies, according to Mandel
brot and Wallis@6#, thatR(x);xH, or

R~L !;LH. ~22!

Feder @9# states that the true variance for the normaliz
FBM is S51; thus, together with Eq.~22!, one obtains Eq.
~11!. However, as mentioned above, it is well known that t
variance of a large-enough FBM array is divergent. Acco
ing to Eq.~10! for largeL, S2 is proportional to the variance
of the FBM, which, together with Eq.~2!, implies that
S2(L);L2H and thus

S~L !;LH. ~23!

This is precisely what we find in our synthetic data; see F
16. We also find that, contrary to Eq.~22!,

R~L !;L11H. ~24!

This can also be seen by inspecting Eqs.~8! and ~9!. If we
replace the variablev by BH(x), then Eqs.~8! and~9! tell us
thatR(L);(@BH(x)2^BH(x)&#. Since the argument of the
sum is proportional toLH, if we replace the sum by an inte
gral, we obtain Eq.~24!, and thereforeR(L)/S(L);L. This
means thatif the data array is large enough, one shou
always obtain a Hurst exponent H51, in agreement with our
results. To the best of our knowledge, Eq.~24! has never
appeared in the literature before. We also mention that Ha
and Beier@30# state that ‘‘@the# R/S analysis fails for@FBM#
since it yieldsH51.0,’’ in complete agreement with our re
sults, although these authors do not provide any reasonin
results in support of their statement. However, we must po
out that if we generate a FBM array, calculate the increme
in the data array~that is, subtract the neighboring points
the array! to form a new array, and analyze it with theR/S
method, the estimated values of the Hurst exponents ar
reasonable agreement with their true values. However,
new array is essentially a FGN array and therefore theR/S
method is relatively accurate if the data array obey the
tistics of a FGN, but not a FBM.

On the other hand, Eqs.~23! and ~24! suggest alternative
methods of analyzing the FBM data: Make a logarithmic p
of S(L), R(L), orR(L)/L versusL. The slopes of the result
ing straight lines areH, 11H, andH, respectively. As an
example, we show in Fig. 16 the results for theR/L method.
The size of the data array is 32 000, the true value ofH is
0.34, and the plot yieldsH.0.36.

We find that the maximum entropy method offers a fa
efficient, and reliable method of analyzing the data a
yields accurate estimates of the Hurst exponent even wi
small data array. The wavelet decomposition method is a
accurate, but its necessary computations and size of the
array for obtaining reliable results are much larger than th
of the maximum entropy method. Thus we believe that
practical applications the maximum entropy method sho
be used and great caution should be taken if any o
method is to be employed.
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We also point out that, as Voss@31# suggested, the Hurs
exponentH is related to the fractal dimensionDf of a FBM
profile throughDf522H. This has been exploited by sev
eral authors@32–34# for estimatingH by using a variational
method to determineDf . Thus the Hurst exponent can als
be determined indirectly.

Finally, another important conclusion of our work is th
when analyzing a given set of data, one should use two
ferent methods to ensure the accuracy of the analysis s
-

o

er

.

-

if-
ce,

for example, the spectral methods are more sensitive to
length of the data array, whereas the RL method is m
sensitive to the true value ofH.
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